Dynamics of excitonic complexes bound to isoelectronic centers - Toward the realization of optically addressable qubits
At a Glance
Section titled âAt a Glanceâ| Metadata | Details |
|---|---|
| Publication Date | 2016-09-01 |
| Journal | PolyPublie (Ăcole Polytechnique de MontrĂ©al) |
| Authors | Philippe St-Jean |
| Analysis | Full AI Review Included |
Technical Documentation & Analysis: Optically Addressable Qubits via Isoelectronic Centers (ICs)
Section titled âTechnical Documentation & Analysis: Optically Addressable Qubits via Isoelectronic Centers (ICs)âExecutive Summary
Section titled âExecutive SummaryâThis study rigorously evaluates Isoelectronic Centers (ICs) in III-V and II-VI semiconductors (GaP, GaAs, ZnSe) as promising solid-state platforms for optically addressable qubits, demonstrating key advantages highly relevant to quantum networks:
- Atomic Homogeneity & Scalability: ICs, as atomic-size defects, exhibit optical homogeneity comparable to Nitrogen-Vacancy (NV) centers in diamond, far superior to self-assembled Quantum Dots (QDs).
- Strong Optical Coupling: N dyads in GaAs demonstrated fast radiative decay (0.2-0.7 ns), comparable to QDs and orders of magnitude faster than N ICs in GaP (100-500 ns).
- Decoherence Challenge Identified: Exciton qubits suffer rapid spin randomization due to hyperfine interaction and LA phonon transfers, compromising coherence (T*2 $\sim$ 115 ps in GaAs).
- Hole-Spin Breakthrough: Demonstrated ultrafast (< 150 ps) and high-fidelity (F > 98.5 %) initialization of a hole-spin qubit bound to Te ICs in ZnSe.
- Optimal Platform Identified: Hole-spins in nuclear spin-free hosts (like ZnSe or diamond) offer quenched hyperfine interaction, addressing the primary hurdle to long coherence times (T2).
Technical Specifications
Section titled âTechnical Specificationsâ| Parameter | Value | Unit | Context |
|---|---|---|---|
| Hole-Spin Initialization Fidelity | > 98.5 | % | Te ICs in ZnSe (Tunneling scheme) |
| Hole-Spin Initialization Time | < 150 | ps | Te ICs in ZnSe (Ultrafast initialization) |
| Trion Radiative Lifetime (ZnSe/Te Dyad Upper Bound) | < 50 | ps | High efficiency allows picosecond initialization |
| N Exciton Radiative Lifetime (GaAs/N Dyad) | 0.2 - 0.7 | ns | Bright states (Comparable to epitaxial QDs) |
| N Exciton Radiative Lifetime (GaP/N Dyad) | 100 - 500 | ns | Limited coupling (Indirect band gap host) |
| Exciton Dephasing Time T*2 (GaAs/N Dyad) | $\sim$ 115 | ps | Primarily limited by Hyperfine interaction |
| Hole Escape Activation Energy (NN1, GaP) | 44.2 | meV | Non-radiative process limiting low-T operation |
| GaP:N Dyad Fine Structure Splitting (NN1) | 2.1 | meV | Indicates strong electron wave-function localization |
| ZnSe Strain-Induced HH-LH Splitting | 12.6 | meV | Shifts heavy-hole states below light-holes |
Key Methodologies
Section titled âKey MethodologiesâThe research utilizes highly precise material synthesis and advanced optical characterization combined with rigorous theoretical modeling:
- Material Synthesis: Samples were grown using epitaxy (Molecular Beam Epitaxy, Metal-Organic Chemical Vapor Deposition) on GaAs or GaP substrates, incorporating ultra-thin $\delta$-doped layers of the isoelectronic impurity (N or Te).
- Sample Density Control: Low impurity concentrations ($\sim 10^{11}$ cm-2 sheet density for GaP:N, $2500$ ”m-2 for ZnSe:Te) were used to allow optical isolation and spatial resolution of single dyads via confocal microscopy.
- Time-Resolved Photoluminescence (TRPL): Used to study exciton recombination dynamics across a temperature range (5 K to 60 K), analyzing decay times ($\tau_{\text{r}}$, $\tau_{\text{s}}$, $\tau_{\text{l}}$) and spontaneous emission rates ($\Gamma_{\text{rad}}$). Achieved temporal resolution was < 100 ps.
- Polarization-Resolved Spectroscopy: Measured photoluminescence intensity as a function of linear and circular polarization, crucial for identifying the local symmetry (e.g., C2v) and determining optical selection rules of excitonic states (excitons and trions).
- Exciton Dynamics Modeling: Developed comprehensive balance of populations models involving eight excitonic states (heavy-hole and light-hole content) to quantify inter-level transfer mechanisms ($\gamma_{\text{hf}}$ via hyperfine interaction, $\Gamma_{\text{ap}}$ via LA phonons) and activation energies ($E_{\text{nr}}$) of non-radiative processes.
- Hole-Spin Initialization Scheme: Demonstrated ultrafast initialization based on spin-preserving tunneling of a resonantly excited donor-bound exciton (D-X0) to a positive trion (X+) bound to the Te dyad.
6CCVD Solutions & Capabilities
Section titled â6CCVD Solutions & CapabilitiesâThe core challenge identified for developing scalable, long-coherence qubits using solid-state defects is the requirement for a host material that combines high crystal quality, low intrinsic nuclear spin, and amenability to nanophotonic integration. The superior performance observed in ZnSe (a II-VI semiconductor with low nuclear spin abundance) points directly toward the necessity of 6CCVDâs Single Crystal Diamond (SCD) as the ideal next-generation platform.
| Research Requirement / Material Constraint | 6CCVD Material Recommendation | Value Proposition for Quantum Engineering |
|---|---|---|
| Ultimate Spin Coherence (T2): Need for nuclear spin-free hosts (Zn, Se, Te isotopes offer low nuclear spin). | Isotopically Purified SCD (99.999% C-12) | Diamond is the ultimate nuclear spin-free host, minimizing the dominant decoherence mechanism (hyperfine interaction) reported in both GaAs ICs and InAs QDs. Enables millisecond-scale coherence times for defects (NV, SiV) necessary for quantum repeaters. |
| High Optical Homogeneity / Scalability: Atomic defects provide sharp, reproducible lines. | Optical Grade SCD Wafers | Our MPCVD process produces defect-free bulk single crystal material, ensuring the atomic homogeneity and spectral stability required for generating identical photons across a quantum network. |
| Integration & High-Fidelity Optical Coupling: Requires interfacing with cavities/waveguides (ZnSe trion lifetime < 50 ps). | Ultra-Smooth Polishing (Ra < 1 nm for SCD) | Precision polishing is essential for creating low-loss optical interfaces (e.g., diamond photonics or solid immersion lenses) that leverage the Purcell effect to boost radiative emission rates and initialization speed well below 50 ps. |
| Advanced Qubit Architectures: Need precise control over defect orientation and thin-film strain (e.g., HH-LH mixing analysis). | Custom Diamond Dimensions and Thickness (SCD 0.1 ”m - 500 ”m) | We supply thin (sub-micron) films or thicker substrates up to 10 mm. Engineers can use precise layer thickness and crystallographic orientation to control strain, optimizing the energy level structure (Πsystem) necessary for coherent spin control and single-shot readout. |
| Charge State Control / Electrical Addressing: BDD or controlled doping required for specific IC charge states. | Boron-Doped Diamond (BDD) Films | Can be tailored to manage the local Fermi level, stabilizing the charge state of implanted or inherent defects (like NV- or the positive trions (X+) used in the ZnSe study), enabling electrical control interfaces. |
| Customization Potential: Study utilized specific dyad configurations requiring precise material modification. | Custom Metalization (Au, Pt, Ti, W, Cu) | 6CCVD provides in-house metal contacts required for applying external electric fields, crucial for the exciton ionization initialization scheme mentioned in the analysis, or for localized field control in quantum structures. |
For custom specifications or material consultation, visit 6ccvd.com or contact our engineering team directly.
View Original Abstract
RĂSUMĂ: La rĂ©alisation de qubits pouvant ĂȘtre couplĂ©s efficacement Ă des photons optiques est nĂ©cessaire pour rĂ©aliser la transmission dâinformation quantique Ă longue distance, par exemple Ă lâintĂ©rieur dâun rĂ©seau quantique. Le principal obstacle empĂȘchant la rĂ©alisation de ces qubits addressables optiquement vient de la grande difficultĂ© de trouver une plateforme offrant Ă la fois une grande homogĂ©nĂ©itĂ© et un fort couplage optique. Les centres isoĂ©lectroniques (CIs),qui sont des impuretĂ©s isovalentes Ă lâintĂ©rieur dâun matĂ©riau semi-conducteur, reprĂ©sentent une alternative fort intĂ©ressante aux systĂšmes de qubits adressables optiquement proposĂ©s dans la littĂ©rature, soit les boĂźtes quantiques auto-assemblĂ©es et les centres NV dans le diamant souffrant, respectivement, dâun fort Ă©largissement inhomogĂšne et dâun couplage optique moins grand que les CIs. En effet, la nature atomique des CIs leur assure une homogĂ©nĂ©itĂ© comparable aux centres NV et leur capacitĂ© Ă lier des complexes excitoniques prĂ©sentant de forts moments dipolaires permet dâobtenir un couplage avec les champs photoniques aussi fort que dans les boĂźtes quantiques. Le but du travail prĂ©sentĂ© dans cette thĂšse est dâĂ©valuer le potentiel de diffĂ©rents complexes excitoniques liĂ©s Ă ces CIs pour fabriquer des qubits adressables optiquement. Cette thĂšse par articles est sĂ©parĂ©e en deux grandes sections. Dans la premiĂšre section, correspondant aux articles 1 et 2, jâai Ă©tudiĂ© les caractĂ©ristiques physiques de qubits excitoniques liĂ©s Ă des CIs dâazote dans le GaP (Article 1) et le GaAs (Article 2). Plus prĂ©cisĂ©ment, ces articles prĂ©sentent une analyse approfondie combinant des mesures de photoluminescence rĂ©solue dans le temps et des modĂšles de balance de populations afin dâidentifier et de quantifier les diffĂ©rents mĂ©canismes impliquĂ©s dans la dynamique de recombinaison des excitons. Dans la seconde section, jâai dĂ©montrĂ© lâinitialisation dâun qubit de spin de trou liĂ© Ă un centre isoĂ©lectronique de Te dans une matrice de ZnSe. Contrairement aux qubits excitoniques, la cohĂ©rence des qubits de spin nâest pas limitĂ©e par leur Ă©mission spontanĂ©e permettant ainsi dâatteindre des temps de cohĂ©rence beaucoup plus intĂ©ressants. Le premier article de cette thĂšse prĂ©sente une Ă©tude de la dynamique de recombinaison des excitons liĂ©s Ă des CIs dâazote dans le GaP. Le principal avantage reliĂ© Ă lâĂ©tude de ce systĂšme vient du fait quâune grande variĂ©tĂ© de centres sont accessibles : ils peuvent ĂȘtre formĂ©s de 1,2 ou 3 impuretĂ©s dâazote et prĂ©senter diffĂ©rentes symĂ©tries Ă lâintĂ©rieur du matĂ©riau hĂŽte. ABSTRACT: The realization of qubits that can be efficiently coupled to optical fields is necessary for long distance transmission of quantum information, e.g. inside quantum networks. The principal hurdle preventing the realization of such optically addressable qubits arises from the challenging task of finding a platform that offers as well high optical homogeneity and strong light-matter coupling. In regard to this challenge, isoelectronic centers (ICs), which are isovalent impurities in a semiconductor host, represent a very promising alternative to the well-studied epitaxial quantum dots and NV centers in diamond which suffer, respectively,from a large inhomogeneous broadening and a less effective coupling to optical fields than ICs. Indeed, the atomic nature of ICs insures an optical homogeneity comparable to NV centers, and their ability to bind excitonic complexes with strong electric dipole moments allows them to offer an optical coupling similar to quantum dots. The aim of the work presented in this thesis is to evaluate the potential of different excitonic complexes bound to these ICs for building optically addressable qubits. This thesis by articles, is separated in two parts. In the first part, corresponding to Article 1 and 2, I study the physics of exciton qubits bound to N ICs in GaP (Article 1) and in GaAas (Article 2). More precisely, these articles present an analysis combining time-resolve PL measurements and balance of population models, allowing to identify and quantify the different mechanisms involved in the exciton recombination dynamics. In the second part, I demonstrate the initialization of a hole-spin qubit bound to a Te IC in ZnSe. Contrary to exciton qubits the coherence time of spin qubit is not limited by their spontaneous emission, allowing to preserve coherence on a much more significant timescale. The first article of this thesis presents a study of the recombination dynamics of excitons bound to N ICs in GaP. The principal advantage of studying this system comes from the large variety of atomic configurations that can be accessed: ICs can be formed from one, two or three impurities, and exhibit different local symmetries inside the host lattice. Although it appears very challenging to realize optically addressable qubits in this system due to its low coupling to optical fields, it has allowed for a better understanding of how the atomic configuration of the underlying IC influences the different mechanisms involved in exciton recombination dynamics (capture, inter-level transfers, and radiative and non-radiative recombination).
Tech Support
Section titled âTech SupportâOriginal Source
Section titled âOriginal Sourceâ- DOI: None